bob_vector_db.qdrant_embedder ============================= .. py:module:: bob_vector_db.qdrant_embedder Classes ------- .. autoapisummary:: bob_vector_db.qdrant_embedder.QdrantEmbedder Module Contents --------------- .. py:class:: QdrantEmbedder(model: str, **kwargs) Bases: :py:obj:`json_embedder.JsonEmbedder` Qdrant JSON embedding interface. The __call__ function expects a string with a JSON dict containing the following attributes: collection: to be used collection name. documents: list with document content, if also images are provided this should be the caption. metadatas: list of metadata dictionaries used as payload. images: optional list of image file names to embed along with the documents. ids: optional list of id strings, if not provided automatically uuid4 are created. .. py:attribute:: model .. py:attribute:: text_model :value: None .. py:attribute:: image_model :value: None .. py:method:: __call__(j: str, media: list = None) -> None Performs the embedding into the Vector DB :param j: Parsable JSON string with embedding information :type j: str .. py:method:: embed_images(data: dict, media: list = None) Embed dictionary with embedding information. :param data: Dictionary with embedding information :type data: dict