# ROS Package [RosGPT4all](https://github.com/bob-ros2/rosgpt4all) This package contains [ROS](https://ros.org) Nodes related to the open source project [GPT4ALL](https://github.com/nomic-ai/gpt4all). It integrates a GPT chat into the ROS framework. It enables to communicate via topics or UNIX socket with a running GPT4ALL chat session.\ Additionally a custom configurable terminal window ROS node is available to enter chat messages and display the GPT response similar to the existing GPT4ALL GUI but with reduced features.\ This package is not another GPT4all variant. It just make use of it and can be seen as a wrapper for ROS. Related links: - https://github.com/nomic-ai/gpt4all - https://ros.org ## Index - [ROS Package RosGPT4all](#ros-package-rosgpt4all) * [Index](#index) * [Docker Support](#docker-support) * [Dependencies](#dependencies) * [Setup package](#setup-package) - [ROS Node GPT](#ros-node-gpt) * [Usage](#usage) * [Node Parameter](#node-parameter) * [Subscribed Topics](#subscribed-topics) * [Published Topics](#published-topics) * [Socket stream](#socket-stream) - [ROS Node TERMINAL](#ros-node-terminal) * [Dependencies](#dependencies-1) * [Usage](#usage-1) * [Node Parameter](#node-parameter-1) * [Subscribed Topics](#subscribed-topics-1) * [Published Topics](#published-topics-1) - [ROS Node EMBEDDER](#ros-node-embedder) * [Embedding data format](#embedding-data-format) * [Usage](#usage-2) * [Node Parameter](#node-parameter-2) * [Subscribed Topics](#subscribed-topics-2) - [Contributing](#contributing) ## Docker Support This ROS package is also as a pre build docker image available.\ See below how to use it * [rosgpt4all/docker](https://github.com/bob-ros2/rosgpt4all/tree/main/docker) ## Dependencies ```bash # install gpt4all pip install gpt4all # if using embedding # use Qdrant pip install 'qdrant-client[fastembed]' # or Chroma DB # install chroma sudo apt install chroma # install chromadb pip install chromadb pip install unstructured ``` ## Setup package ```bash # for the following commands to work, an installed ROS2 distribution is required # run in your ros2_ws/src folder git clone https://gitlab.com/bob-ros2/rosgpt4all.git cd .. colcon build . install/setup.bash ``` ## ROS Node GPT ### Usage ```bash # run as server ROS node ros2 run rosgpt4all gpt.py # run with redirect produced output ros2 run rosgpt4all gpt.py --ros-args -r gpt_out:=/speak # send message to gpt4all via command line ros2 topic pub --once /gpt_in std_msgs/msg/String "{data: 'Hello'}" ``` ### Node Parameter > ~allow_download\ Type: string\ Allow API to download models from gpt4all.io.\ Default: true > ~device\ Type: string\ The processing unit on which the GPT4All model will run. It can be set to:\ "cpu": Model will run on the central processing unit.\ "gpu": Model will run on the best available graphics processing unit, irrespective of its vendor.\ "amd", "nvidia", "intel": Model will run on the best available GPU from the specified vendor.\ Alternatively, a specific GPU name can also be provided, and the model will run on the GPU that matches the name if it's available.\ Default: cpu > ~eof_indicator\ Type: string\ End of file indicator. It will be send when the generator task was done. (only gpt_generator and gpt_sentence topics). Leave blank if no EOF should be send.\ Default: EOF > ~max_tokens\ Type: integer\ The maximum number of tokens to generate.\ Default: 200 > ~model_name\ Type: string\ GPT4ALL model to be used. On the node very first start it will be dowloaded if it does not exist in ~model_path. Auto download depends on ~allow_download.\ Default: orca-mini-3b.ggmlv3.q4_0.bin > ~model_path\ Type: string\ GPT4ALL model path to be used.\ Default: ~/.local/share/nomic.ai/GPT4All > ~n_batch\ Type: integer\ Number of prompt tokens processed in parallel. Larger values decrease latency but increase resource requirements.\ Default: 8 > ~prompt\ Type: string\ Promp format string to be used.\ Default: > {0}\n\n > ~repeat_last_n\ Type: integer\ How far in the models generation history to apply the repeat penalty.\ Default: 64 > ~repeat_penalty\ Type: double\ Penalize the model for repetition. Higher values result in less repetition.\ Default: 1.18 > ~socket_path\ Type: string\ Unix socket where to write the output.\ Default: /tmp/gpt.sock > ~temp\ Type: double\ The model temperature. Larger values increase creativity but decrease factuality.\ Default: 0.7 > ~top_k\ Type: integer\ Randomly sample from the top_k most likely tokens at each generation step. Set this to 1 for greedy decoding.\ Default: 40 > ~top_p\ Type: double\ Randomly sample at each generation step from the top most likely tokens whose probabilities add up to top_p.\ Default: 0.4 ### Subscribed Topics > ~gpt_in (std_msgs/String)\ GPT input. ### Published Topics > ~gpt_out (std_msgs/String)\ GPT ouput. The whole message will be published when the generator has finished. > ~gpt_generator (std_msgs/String)\ GPT generator ouput. Each single token is published to the topic. > ~gpt_sentence (std_msgs/String)\ GPT ouput aggregated as sentence or sub sentence. A message with content EOF indicates the end. of the generator output. ### Socket stream The GPT node also creates a socket where the generator output will be streamed in realtime. Multiple clients can connect. ```bash # the generator output can be received as followed netcat -v -U /tmp/gpt.sock ``` ## ROS Node TERMINAL With this Ros Node the generator output of GPT4ALL node can be received and displayed in realtime. This works as well with any other stdout stream. Also a topic input subscriber is available. An input field can optionally be turned on which can be used to publish messages to another topic. ### Dependencies The required QT5 libraries should already exist if ROS is installed. If missing use below installation to get them. ```bash sudo apt-get install python3-pyqt5 ``` ### Usage ```bash # connect terminal with GPT node socket stream, use one of the existing QT5 arguments netcat -v -U /tmp/gpt.sock | python3 terminal.py -qwindowgeometry 640x480+600+300 # run frameless terminal window using ROS parameter netcat -v -U /tmp/gpt.sock | ros2 run rosgpt4all terminal.py --ros-args -p frameless:=true -p geometry:=[300,300,600,480] # show window on another display netcat -U /tmp/gpt.sock | ros2 run rosgpt4all terminal.py --ros-args -p display:=1 -p geometry:=[300,300,600,480] ``` ### Node Parameter > ~display\ Type: integer\ Display number where to show the window. -1 = default display.\ Default: -1 > ~fontname\ Type: string\ Window fontname.\ Default: courier > ~fontsize\ Type: integer\ Window fontsize.\ Default: 12 > ~frameless\ Type: boolean\ Switch off window caption.\ Default: false > ~geometry\ Type: integer array\ Window geometry. [x, y, with, height] > ~margin\ Type: integer array\ Window inner margin. [left, top, right, bottom]\ Default: [10,0,0,0] > ~input\ Type: boolean\ Enables or disables the text input field.\ Default: true > ~opacity\ Type: double\ Window opacity. 1.0 = fully visible.\ Default: 1.0 > ~stylesheet\ Type: string\ Stylesheet qss of PlainText area.\ Default: background-color: #000000; color: #f0f0f0; > ~title\ Type: string\ Title of window.\ Default: GPT4ALL Terminal > ~line_count\ Type: string\ Maximum line count in the text area. 0 = unlimited.\ If the number exceeds the lines are removed from the top. Default: 0 ### Subscribed Topics > ~input (std_msgs/String)\ Read input data from topic in addition to be able to read data from stdin. ### Published Topics > ~gpt_in (std_msgs/String)\ Publish to GPT4ALL input. ## ROS Node EMBEDDER Basic Embedder ROS Node. This ROS node subscribes to an /embed String topic to receive JSON data with embedding messages. It embeds the delivered data into the configured Vector DB. A Qdrant Vector DB is the default DB. To embed into a Chroma DB set the environment variable EMBED_CHROMADB, it's enough if it just exists. See ROS parameter for further configuration. Related Qdrant links: - https://qdrant.tech/ - https://github.com/qdrant/fastembed - https://qdrant.tech/documentation/embeddings/nomic/ By default model `nomic-ai/nomic-embed-text-v1` will be used to create embeddings for Qdrant. Related Chroma links: - https://www.trychroma.com/ - https://docs.trychroma.com/ By default Sentence Transformers `all-MiniLM-L6-v2` model will be use to create embeddings for Chroma. ### Embedding data format The JSON data which is received by the String topic has to contain the following fields. (for Qdrant the ids are optional) ```json { "collection": "xyz", "documents": ["hey ya","jo do"], "metadatas": [{"name":"works"}, {"name":"nut"}], "ids": ["id1","id2"] } ``` ### Usage ```bash # in order to work below examples expects a running Qdrant or Chroma Vector DB # start embedder node, by default use Qdrant Vector DB running on localhost ros2 run rosgpt4all embedder # start embedder node using Chroma Vector DB running on localhost EMBED_CHROMADB= ros2 run rosgpt4all embedder # run in debug mode, this will also set Python logging to level DEBUG ros2 run rosgpt4all embedder --ros-args --log-level DEBUG # this works without a Qdrant server ros2 run rosgpt4all embedder --ros-args -p path:=/home/ros/qdrant_data # this works without a Chroma server EMBED_CHROMADB= ros2 run rosgpt4all embedder --ros-args -p path:=/home/ros/chroma_data # publish from shell an embed order with a single item ros2 topic pub --once embed std_msgs/msg/String 'data: "{\"collection\":\"xyz\", \"documents\":[\"hey\"], \"metadatas\": [{\"name\":\"bob\"}]}"' ``` ### Node Parameter > ~model\ Modelname to be used to produce the embedding. It will be downloaded if it does not yet exists locally.\ Default: '' > ~host\ Host name or ip.\ Default: 'localhost' > ~port\/ To be used port for the Vector DB API.\ Default: (6333 or 8000, this depends from used Vector DB) > ~location\ Location of Vector DB. Can also be an URL. This parameter is only used by Qdrant.\ Default: '' > ~path\ Path where to store the Vector DB data.\ Default: '' ### Subscribed Topics > ~embed (std_msgs/String)\ Incoming JSON string with the embedding data.